Using High Resolution Digital Elevation Models (DEMs) and Street Level Imagery for Rock Cut Slope Inventory and Rockfall Hazard Rating YONATHAN ADMASSU, JAMES MADISON UNIVERSITY STGEC SEPTEMBER 17, 2025 # <u>Using High Resolution Digital Elevation Models (DEMs) and Street Level</u> <u>Imagery for Rock Cut Slope Inventory and Rockfall Hazard Rating</u> Dr. Shabbir Hossain – VTRC Dr. John Miller - VTRC Dr. Ramesh Neupane - VDOT Dr. Brian Bruckno - VDOT Mr. Affan Habib - VDOT Mr. James Pezar VDOT Dr. Raja Shekharan - VDOT Mr. Travis Higgs - VDOT JMU Students - Miranda Knight and Maria Petrova In Cooperation with the U.S. Department of Transportation Federal Highway Administration Virginia Transportation Research Council (A partnership of the Virginia Department of Transportation and the University of Virginia since 1948) Charlottesville, Virginia September 2025 VTRC 25-Rx #### **PURPOSE** - Develop a desktop methodology using digital elevation model (DEMs) and street-level imagery - ☐ Rock cut slope inventory - Regional scale location, geometry, preliminary geology - ☐ USMP-based rockfall hazard/risk rating system on selected sites - Evaluate the accuracy of the approach compared to field data collection - Quantify the time saved using the proposed methodology - Geotechnical Asset Management (GAM) - Rock/soil cut slopes, retaining walls, and material sources - Geotechnical assets typically handled using a reactive approach - Provide guidance to manage geotechnical assets - Building an inventory of unstable slopes - Assess their condition - Establishing performance standards and service life criteria, - Identifying and developing risk reduction corrective actions, and - Prioritizing and taking risk reduction corrective actions. - Geotechnical Asset Management (GAM) - Need for proactive approaches - Oregon's Rockfall Hazard Rating System (RHRS) - Assessing hazard/risk of rockfall | | | | | RATING CRITER | RIA AND SCORE | | | |--------------------|----------------|-------------------------------|---|--|---|--|--| | CAT | EGOF | RY | POINTS 3 | POINTS 9 | POINTS 27 | POINTS 81 | | | SLO | PE HE | EIGHT | 25 FT | 50 FT | 75 FT | 100 FT | | | DITO | CH EF | FECTIVENESS | Good
catchment | Moderate catchment | Limited catchment | No
catchment | | | AVE | RAGE | VEHICLE RISK | 25%
of the time | 50%
of the time | 75%
of the time | 100%
of the time | | | | CENT
HT DIS | OF DECISION
STANCE | Adequate site
distance, 100%
of low design
value | Moderate sight
distance, 80% of
low design value | Limited site
distance, 60% of
low design value | Very limited
sight distance,
40% of low
design value | | | | | Y WIDTH INCLUDING
HOULDERS | 44 feet | 36 feet | 28 feet | 20 feet | | | CTER | CASE 1 | STRUCTURAL
CONDITION | Discontinuous
joints, favorable
orientation | Discontinuous
joints, random
orientation | Discontinuous
joints, adverse
orientation | Continuous
joints, adverse
orientation | | | SEOLOGIC CHARACTER | 3 | ROCK FRICTION | Rough, irregular | Undulating | Planar | Clay infilling or
slickensided | | | SEOLOGI | CASE 2 | STRUCTURAL CONDITION | Few differential erosion features | Occasional erosion features | Many erosion features | Major erosion features | | | O | CA | DIFFERENCE IN EROSION RATES | Small
difference | Moderate
difference | Large
difference | Extreme
difference | | | QUA | NTITY | | 1 FT 3 cubic yards | 2 FT
6 cubic
yards | 3 FT
9 cubic
yards | 4 FT
12 cubic
yards | | | CLIN | MATE | AND PRESENCE
R ON SLOPE | Low to moderate
precipitation; no
freezing periods,
no water on
slope | Moderate
precipitation or
short freezing
periods or
intermittent water
on slope | High precipitation or long freezing periods or continual water on slope | High precipitation and long freezing periods or continual water on slope and long freezing periods | | | ROC | CKFAL | L HISTORY | Few falls | Occasional falls | Many falls | Constant falls | | Oregon State Highway Division (Pierson et al. 1990) - Need for proactive approaches - FHWA's unstable slope management program (USMP) - Assessing hazard/risk of rockfall | Management Area: | | | | | | | | | Date: | | | |--|------------------------------|-------------------------|---|---|--|-------|---|--|---|---|-------| | that apply within one of the categories): Raveling/Undermining Rock Avalanche Translational of the categories): Indeterminate Rock Failures Differential Erosion Shallow Slum | | | | | | | | | Above, Below, or Across Route Rotational Debris Flow P Erosional Failure | | | | Road/Trail No.: | | | | | | | | Rater | r: | | | | Beginning Mile Marker: | Er | nding Marker: | | | Side: | | | Weather: | | | | | Begin Lat. (xx.xxxxx) Coord.: Long. (-xxx.xx | | Lat. (xx.:
Long. (-) | xxxxx):
xx.xxxxx): | | | | Datum: | AADT: | | | | | Length of Affected Road, | Slope Heigh | t (rock) / | Axial Leng | th (s | lide) (ft): | | Slope Angle (*): | | | | | | Sight Distance (ft): | | | Usable Road | lway/Tre | ail Width (| ft): | | | Speed Limit (mp | h): | | | Ditch Width (ft): RAN | | tch Dep | th (ft): | NGE | Ditch Slo | pe (I | H:V): RANG | GE | Blk Size (ft)/Volu | ume (c | y): | | Annual Rainfall (in): | NGE So | le Acce | ss Route 🗆 Yes | s 🗆 No | Fixes Pre | sent | □ Yes □ N | lo | Photo # Range: | | | | Category Rating | g | Т | PRE 3 | LIMINA | RY RATII | NG | 27 | | 81 | | Score | | A. Landslide – Roadway \ | | 0 | | | | | 0.0000101 | | 51-100 Percent | + | Score | | Affected B. Landslide – Slide/Erosion Effects | | | - S reiteilt | 6-2 | 5 Percent | | 26-50 Perce | nt | 51-100 Percent | t | | | A STATE OF THE STA | ion Effects | sligi | ible crack or
ht deposit of
material /
nor erosion | 1 inch
inch
mate
erosio | offset, or 6-
deposit of
rial / major
in will affect | | 2-inch offset
12-inch depo
mod. erosio
impacting tra | or
sit/ | 4-inch offset or 2
inch deposit/ sevi
erosion impactir
travel consistent | 24-
ere | | | B. Landslide – Slide/Erosi
C. Landslide – Roadway L | | sligi | ible crack or
ht deposit of
material / | 1 inch
inch
mate
erosio
trave | offset, or 6-
deposit of
rial / major | | 2-inch offset
12-inch depo
mod. erosio | or
sit/ | 4-inch offset or 2
inch deposit/ seve
erosion impactin | 24-
ere | CALC | | B. Landslide – Slide/Erosi
C. Landslide – Roadway L
Affected
D. Rockfall – Ditch Effect | Length | sligi | ible crack or
ht deposit of
material /
nor erosion | 1 inch
inch
mate
erosio
trave | offset, or 6-
deposit of
rial / major
n will affect
el in < 5 yrs | | 2-inch offset
12-inch depo
mod. erosio
impacting tra
annually | or
sit/ | 4-inch offset or 2
inch deposit/ sevi
erosion impactir
travel consistent | 24-
ere
ng
tly | CALC | | B. Landslide – Slide/Erosi
C. Landslide – Roadway L
Affected
D. Rockfall – Ditch Effecti
consider launch features) | Length | sligt
mi | ible crack or
ht deposit of
material /
nor erosion | 1 inch
inch
mate
erosio
trave | offset, or 6-
deposit of
rial / major
on will affect
el in < 5 yrs
100 ft | | 2-inch offset
12-inch depo
mod. erosio
impacting tra
annually
225 ft | or
sit/
on
ivel | 4-inch offset or 2
inch deposit/ sev
erosion impactir
travel consistent
400 ft | 24-
ere
ng
tly | CALC | | B. Landslide – Slide/Erosi
C. Landslide – Roadway L
Affected
D. Rockfall – Ditch Effect
(consider launch features)
E. Rockfall – Rockfall Hist | Length | sligt
mi | ible crack or
ht deposit of
material /
nor erosion
25 ft
Good
Few Falls | 1 inch
inch
mate
erosio
trave | offset, or 6- deposit of rial / major n will affect el in < 5 yrs 100 ft oderate 2 ft or | | 2-inch offset
12-inch depo
mod. erosio
impacting tra
annually
225 ft
Limited
Many Falls
3 ft
or | or
sit/
on
ivel | 4-inch offset or 2 inch deposit/ sew erosion impactir travel consistent 400 ft No Catchment Constant Falls 4 ft or | 24-
ere
ng
tly | CALC | | B. Landslide – Slide/Erosi C. Landslide – Roadway L Affected D. Rockfall – Ditch Effecti (consider launch features) E. Rockfall – Rockfall Hist F. Rockfall – Block Size on per Event | Length | sligli
mi | ible crack or ht deposit of material / nor erosion 25 ft Good Few Falls 1 ft | 1 inch inch mate erosio trave M Occa Partial Use n requir ml/30 | offset, or 6 deposit of rial / major n will affect el in < 5 yrs 100 ft oderate sional Falls 2 ft or 6 yd³ use remain nodification ed, short (3 min.) detou | s | 2-inch offset 12-inch depo mod. erosic impacting tra annually 225 ft Limited Many Falls 3 ft or 9 yd Use is blocke long (-30 mi detour availa or less than 1 | or
sit/
on
ivel | 4-inch offset or 2 inch deposit/ sevi erosion impactir travel consistent 400 ft No Catchment Constant Falls 4 ft | 24-
ere
ng
tly | | | B. Landslide – Slide/Erosi C. Landslide – Roadway L Affected D. Rockfall – Ditch Effect (consider launch features) E. Rockfall – Rockfall Hist F. Rockfall – Block Size or per Event G. All – Impact on Use | Length iveness tory r Volume | sligi
mi | ible crack or
ht deposit of
material /
nor erosion
25 ft
Good
Few Falls
1 ft
or
3 yd3 | 1 inch inch mate erosio trave M Occa Partial Use n requir mi/30 a Occas Minor | offset, or 6 deposit of rial / major n will affect el in < 5 yrs 100 ft oderate sional Falls 2 ft or 6 yd³ use remain odification ed, short (3 | s s | 2-inch offset
12-inch depo
mod. erosio
impacting tra
annually
225 ft
Limited
Many Falls
3 ft
or
9 yd³
Use is blocke
long (>30 mi
detour availa | or
or
ssit/
on
no
vvel | 4-inch offset or 2 inch deposit/ severosion impactir travel consistent 400 ft No Catchment Constant Falls 4 ft or 12 yd³ Use is blocked – detour available closure longer tha | no or or no 1 | CALC | | B. Landslide – Slide/Erosi C. Landslide – Roadway L Affected D. Rockfall – Ditch Effect (consider launch features) E. Rockfall – Block Size or per Event G. All – Impact on Use H. All – AADT / Usage / E or Recreational Impor | Length iveness tory r Volume | sligi
mi | ible crack or the deposit of material / nor erosion 25 ft Good Few Falls 1 ft or 3 yd suscentification with the continues minor delay used to the continues of | 1 inch inch mate erosio trave M Occa Partial Use n requir mi/30 a Occas Minor | offset, or 6 deposit of rial / major in will affect el in < 5 yrs 100 ft oderate sional Falls or 6 yd1 use remain nodification ed, short (3 min.) detou vailable 200 ionally used economic / | s s | 2-inch offset 12-inch depo mod. erosio impacting tra annually 225 ft Limited Many Falls 3 ft or 9 ydi Use is blocke long (>30 mi detour availa or less than 1 closure 450 Frequently ut Moderal re importance | or sist/on no de | 4-inch offset or 2 inch deposit/ sew erosion impactir travel consistent 400 ft No Catchment Constant Falls 4 ft or 12 yd³ Use is blocked – detour available closure longer tha week 800 Constantly uses Significant econor | 24-ere ere eng eng en | CALC | | | | | | SLO | PE RATING FORM | - DETAILED SLOP | E HAZARD RATIN | G | | | | | | |-------------------------|---|--------------------|--|------------------------------------|--|---|---|---|---|--|--|--|--| | | | Cat | egory | Rating | 3 | 9 | 27 | 81 | Score | | | | | | I. All – Slope Drainage | | | | age | Slope appears dry
or well drained;
surface runoff well
controlled | Intermittent water
on slope; mod. well
drained; or surface
runoff moderately
controlled | Water usually on
slope; poorly
drained; or
surface runoff
poorly controlled | Water always on
slope; very poorly
drained; or surface
water runoff control
not present | | | | | | | J. A | All – An | nnua | nual Rainfall 0-10" 10-30" 30-60" 60"+ | | | | | | | | | | | | | | | | ht (rockfall) /
e (landslide) | 25 ft | 50 ft | 75 ft | 100 ft | CALC | | | | | | | ion | | Thaw
clima | Stability (cold
tes) | Unfrozen/Thaw
Stable | | | Highly Thaw
Unstable | | | | | | | | / Eros | | | bility-Related
t. Frequency | Every 10 years | Every 5 years | Every 2 years | Every year | | | | | | | Slope Type | rckfalls Landslides/ Erosion 1 D, E, F) (add A, B, C) | N. | Mov | ement History | Minor movement
or sporadic creep | Up to 1 inch
annually or steady
annual creep | Up to 3 inches per
event, one event
per year | >3" per event, >6"
annually, more than
1 event per year
(includes all debris
flows) | | | | | | | nstable | | | | fall-Related
t. Frequency | Normal, scheduled maintenance | Patrols after every
storm event | Routine seasonal patrols | Year-round patrols | | | | | | | One O | 2 E | ter | 1 9 | P. Structural
Condition | Favorable | Random | Adverse
Discontinuous | Adverse
Continuous | | | | | | | Select | Rockfalls
add D, E, F) | harac | Š | Q. Rock
Friction | Rough/
Irregular | Undulating | Planar | Clay infilled/
Slickensided | | | | | | | | Re (adi | Geologic Character | Case 2 | R. Structural
Condition | Few differential erosion features | Occasional
differential erosion
features | Many differential erosion features | Major differential erosion features | | | | | | | | | Č | 3 | S. Diff. in
Erosion Rates | Small difference | Moderate
difference | Large difference | Extreme difference | | | | | | | | | | | | T. LANDSLIDE HAZARD TOTAL (A+B+C+I+J+K+L+M+N) | | | | | | | | | | | | | | | U. ROCKFAL | L HAZARD TOTAL (D | +E+F+I+J+K+O+(gre | atest of P+Q or R+S)) | CALC | | | | | | | | | | | DETA | AILED RISK RATING | G | | | | | | | | | Route
Trail W | | | | 36 ft
14 ft | 28 ft
10 ft | 20 ft
6 ft | 12 ft
2 ft | CALC | | | | | | N | Huma | n E | kposu | re Factor | 12.5% of the time | 25% of the time | 37.5% of the time | 50% of the time | | | | | | | | | | | ght Distance
ability on trails) | Adequate, 100% of
low design value | Moderate, 80% of
low design value | Limited, 60% of
low design value | Very Limited, 40% of
low design value | roads | | | | | | | | | Way (R/W) Impacts (If attended) | | | | Minor effects
beyond R/W | Private property,
no structures
affected | Structures, roads, RR,
utilities, or Parks
affected | | | | | | | Enviror
if Left (| | | Cultural Impacts
ed | None/No potential to cause effects | Likely to effect/No
hist. prop. affected | Likely to adversely
affect/Finding of
no adverse effect | Current adverse
effects/Adverse
effect | | | | | | | V | . Main | ten | ance | Complexity | Routine effort/In-
House | In-House Maint./
Special project | Specialized equip./contract | Complex/Dangerous
effort/location/
contract | | | | | | | BB | . Event | Co | st | | \$0-2k | \$2-25k | \$25-100k | >\$100k | | | | | | | | | | | | | CC. R | ISK TOTALS: (G+H+ | V+W+X+Y+Z+AA+BB) | CALC | | | | | | | | | | | | 1,000,000 | * | | | | | | | - Field Data Collection - Time - Money - Safety - Alternative Data Collection Methods - Remote sensing methods such as LiDAR and street-level photogrammetry **DEMs** #### Home #### Virginia LiDAR Download Application VGIN Administrator Virginia Geographic Information Network #### Summary VA most current LiDAR (point cloud and DEM) download application of USGS and NOAA data. #### View Full Details #### Details Application Web Experience December 4, 2024 at 3:30:47 PM EST Date Updated January 26, 2024 at 2:06:04 PM EST Published Date Public Anyone can see this content Custom License View license details https://vgin.vdem.virginia.gov/apps/VGIN::virginia-lidar-download-application/explore https://opentopography.org/ Street Level Imagery - Mapillary DEMs/Street level imagery #### **Rock Cut Slope Inventory** Routes 211, 220, and 259 in the Staunton District of VDOT #### DEM/ ArcGIS Automated Rock Cut Slope Identification Slope Angle Slope Aspect Slope Length Location (Lat./Long.) **Street-Level Imagery** Preliminary Geologic Characterization #### Field Verification Collect GPS Locations of Rock Cut Slopes **Identifying Rock Cut Slopes from DEMs** Cut slope/Embankment slope - Curvature Soil slope/rock slope - Roughness Spatial and Geometric Data Collection from DEMs Evaluating Geologic Characteristics from Street-Level Imagery Slope Height: Difference between maximum and minimum values. Slope Angle: Average slope angle value for each polygon is calculated. Slope Length: Length of rectangles bounding each slope Midpoint Coordinate: Calculate the x,y coordinate of the centroid of each slope polygon using 'calculate geometry' function **Evaluating Geologic Characteristics from Street-Level Imagery** # **RESULTS - Cut Slope Inventory** #### • 142 Rock cut slopes | Slope Id | Slope
Aspect | Average Slope
(Deg) | Slope Length
(ft) | Slope
Height(ft) | Centroid
Latitude | Centroid
Longitude | |-----------|-----------------|------------------------|----------------------|---------------------|----------------------|-----------------------| | Rt_211-1 | NW | 25.0 | 107.5 | 19.0 | 38.6747 | -78.4462 | | Rt_211-2 | SE | 22.1 | 99.3 | 15.7 | 38.67071 | -78.3812 | | Rt_211-3 | NE | 30.9 | 318.9 | 36.8 | 38.66881 | -78.3793 | | Rt_211-4 | SW | 28.6 | 318.9 | 35.4 | 38.66859 | -78.3794 | | Rt_211-5 | SE | 30.8 | 318.9 | 23.3 | 38.66847 | -78.3789 | | Rt_211-6 | SW | 36.5 | 679.8 | 91.6 | 38.66884 | -78.3788 | | Rt_211-7 | SW | 28.6 | 358.6 | 32.1 | 38.66734 | -78.3773 | | Rt_211-8 | SW | 30.4 | 285.2 | 47.8 | 38.66566 | -78.3747 | | Rt_211-9 | NE | 29.6 | 238.2 | 31.1 | 38.66343 | -78.3314 | | Rt_211-10 | SW | 33.4 | 475.1 | 58.7 | 38.66362 | -78.3313 | ## RESULTS- Cut Slope Inventory - 20.6 miles of rock/soil cut slopes /23.9 miles 86.2 % - Cut slopes > 25 ft high 100% - 8.2 miles rock cut slopes / 8.6 miles of verified - 95.3 % | Route
No | Mileage of
Slope Cut
(Automated
Method) | Mileage of Slope Cut
(Visually Mapped on
Hillshade) | Mileage of Rock
Slope
(Automated
Method) | Number of Slope
Cuts (Automated
Method) | Mileage of Rock
Slope (Field
Verified) | |-------------|--|---|---|---|--| | 220 | 12 mi | 13.8 mi | 4.4 mi | 59 Sites | 4.7 mi | | 211 | 5.7 mi | 7.1 mi | 2.1 mi | 37 Sites | 2.1 mi | | 259 | 2.9 mi | 3 mi | 1.7 mi | 46 Sites | 1.8 mi | ## METHODS - Rockfall Hazard Rating #### DEM-Hillshade Map/ ArcGIS Lat/Long Slope Height Slope Angle Slope Length Catchment Ditch Width/Depth Route Width or Trail Width Percent of Decision Sight Distance (Judge avoidance ability on trails) – SSD (Shortest Straight Distance) #### Street-Level Imagery Rockfall – Block Size Slope Drainage **Structural Condition** **Rock Friction** **Differential Erosion Features** Differential Erosion Rates **Detailed Rating Parameters** #### Field Verification Qualitative/quantitative measurements | | Parameters | Traditional
Data Source | Data
Source
Used | |-------------------------------------|---|------------------------------------|-----------------------------| | _ | Hazard Type | Field Visit | Street-Level
Imagery | | Site Information | Route No.
Beginning Mile Marker
Lat/Long | VDOT
Field Visit
Field Visit | ArcGIS Bae
Map | | orm | Road Length Affected | Field Visit | ArcGIS Aeric
Imagery | | Jul é | Slope Height
Slope Angle | Field Visit
Field Visit | ArcGIS Tools | | Sife | Sight Distance | Field Visit | ArcGIS
Aerial
Imagery | | | Affected Roadway Width | Field Visit | ArcGIS Aeric
Imagery | | | Catchment Ditch Width/Depth | Field Visit | ArcGIS Aeric
Imagery | | | Annual Rainfall | NOAA | Street-Level | | ary
ers | Rockfall – Ditch Effectiveness | Field Visit | Imagery | | nc
gc
ete | Rockfall – Rockfall History | VDOT | | | Preliminary
Rating
Parameters | Rockfall – Block Size | Field Visit | ArcGIS Aeric
Imagery | | 들었말 | Impact on Use | VDOT | Ŭ, | | Pro
Pa | AADT / Usage / Economic or
Recreational Importance | VDOT | | | | Slope Drainage | Field Visit | ArcGIS Aeric
Imagery | | | Annual Rainfall | NOAA | | | | Slope Height Rockfall-Related Maintenance | Field Visit | ArcGIS Tools | | Jek | Frequency | VDOT | | | άπ | Structural Condition | Field Visit | ArcGIS Aeric
Imagery | | Par | Rock Friction | Field Visit | Street-Level
Imagery | | <u></u> | Differential Erosion Features | Field Visit | Street-Level
Imagery | | Rating Parameters | Differential Erosion Rates | Field Visit | Street-Level
Imagery | | | Route Width or Trail Width | Field Visit | ArcGIS Aeric
Imagery | | <u>ŏ</u> | Human Exposure Factor | VDOT | VDOT | | Detailed | Percent of Decision Sight Distance
(Judge avoidance ability on trails) | Field Visit | Street-Level
Imagery | | | Right of Way Environmental/Cultural Impacts if | VDOT | | | | | VDOT | | ## METHODS - Rockfall Hazard Rating (RHRS) Quantitative /Qualitative Measurements ## RESULTS- Rockfall Hazard Rating (RHRS) | Parameters | Site 1 | Site 2 | Site 3 | Site 4 | Site 5 | Site 6 | Site 7 | Site 8 | Site 9 | Site 10 | Site 11 | Site 12 | Site 13 | |--|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|---------|------------|---------| | Quantitative Measured Parameters Values | | | | | | | | | | | | | | | Roadway Width (ft) | 18 | 18 | 25 | 20 | 18 | 18 | 20 | 20 | 23 | 20 | 21 | 24 | 26 | | Road Length (ft) | 253 | 1800 | 1165 | 435 | 557 | 253 | 1200 | 916 | 1021 | 860 | 1094 | 934 | 1200 | | Slope Height (ft) | 83 | 80 | 50 | 64 | 102 | 83 | 115 | 60 | 101 | 160 | 65 | 131 | 33 | | Slope Angle
(Deg.) | 50 | 80 | 80 | 65 | 56 | 50 | 83 | 60 | 70 | 65 | 70 | 65 | 60 | | Sight Distance
(ft) | 516 | 1044 | 1651 | 197 | 189 | 516 | 292 | 2100 | 517 | 2400 | 470 | 5500 | 470 | | Rock Block Size (ft) | <1 | 4 to 5 | | <0.5 | 3 to 5 | <1 | 2 to 3 | 4 | 1 to 2 | 4 | 5 | 5 to
10 | 3 to 5 | | Qualitative Determined Parameters Scores | | | | | | | | | | | | | | | Catchment Ditch
Effectiveness | 3 | 27 | 3 | 81 | 3 | 9 | 81 | 3 | 81 | 3 | 81 | 3 | 81 | | Rockfall Size | 3 | 81 | 81 | 3 | 81 | 3 | 27 | 81 | 9 | 81 | 81 | 81 | 81 | | Slope Drainage | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 9 | 3 | 3 | 27 | 3 | | Annual RF | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | 27 | | Slope Height (ft) | 81 | 81 | 9 | 9 | 81 | 27 | 81 | 81 | 81 | 81 | 81 | 81 | 9 | | Structural
Condition | 81 | 3 | 3 | 3 | 81 | 81 | 81 | 9 | 9 | 9 | 9 | 81 | 3 | | Rock Friction | 27 | 9 | 27 | 27 | 27 | 27 | 9 | 9 | 9 | 9 | 9 | 27 | 27 | | Differential
Erosion Features | 3 | 27 | 81 | 3 | 3 | 3 | 9 | 3 | 3 | 3 | 3 | 3 | 81 | | Differential
Erosion Rates | 3 | 27 | 9 | 3 | 3 | 3 | 9 | 3 | 3 | 3 | 3 | 3 | 81 | ## RESULTS-Rockfall Hazard Rating (RHRS) #### Field VS Desktop Data | Site | Field
Slope
Length (ft) | Slope
Length (ft) | Field
Roadway
Width (ft) | Roadway
Width (ft) | Field
Slope
Height
(ft) | Slope
Height
(ft) | Field
Slope
Angle
(degrees) | Slope
Angle
(degrees
) | | | |------------|-------------------------------|----------------------|--------------------------------|-----------------------|----------------------------------|-------------------------|--------------------------------------|---------------------------------|---------------|----------------------| | Site 1 | 1392 | 253 | 27 | 18 | 73 | 83 | 44 | 50 | | | | Site 2 | 1160 | 1800 | 23 | 18 | 84 | 80 | 90 | 80 | | | | Site 3 | 1740 | 1165 | 38 | 25 | 135 | 50 | 90 | 80 | | | | Site 4 | 443 | 435 | 23 | 20 | 39 | 64 | 60 | 65 | | | | Site 5 | 1276 | 557 | 24 | 18 | 108 | 102 | 70 | 56 | | | | Site 6 | 1450 | 253 | 24 | 18 | 144 | 83 | 90 | 50 | | | | Site 7 | 30 | 1200 | 24 | 20 | 43 | 115 | 90 | 83 | | | | Site 8 | 290 | 916 | 21 | 20 | 70 | ۷0 | 00 | 40 | | | | Site 9 | 2465 | 1021 | 24 | 23 | 4 | | | | treet-level | DEM/Street-level | | Site
10 | 522 | 860 | 21 | 20 | 9 | <u>ameter</u> | 511 | lmage | VS Field (PI) | View VS Field (VDOT) | | Site
11 | 191 | 1094 | 25 | 21 | | tchment
ectivenes | | | 10 | 8 | | Site
12 | 3190 | 934 | 26 | 24 | 1: Stru | ıctural C | ondition | | 8 | 6 | | Site
13 | 1252 | 1200 | 20 | 26 | ² Roc | ck Frictio | n | | 10 | 5 | | | | | | | | erential I
atures | Erosion | | 8 | 5 | | | | | | | Diff | erential I | Erosion Rates | | 9 | 5 | # BENEFITS | Tasks | No
of
Sites | Method | Total Time
(days) ^a | Average
Time Per Site
(minutes) | Total Cost | Average
Cost Per
Site | |--------------------------|-------------------|-----------------------------|-----------------------------------|---------------------------------------|------------|-----------------------------| | Inventory
Preparation | 142 | DEM/Street-level
Imagery | 3.2 | 10.8 | \$1,280 | \$9.0 | | rreparation | | Field | 15 | 51 | \$9,291 | \$65.5 | | USMP RHRS | 13 | DEM/Street-level
Imagery | 1.2 | 45 | \$490 | \$37.5 | | | | Field | 6.5 | 240 | \$4,026 | \$310 | #### **GAM RECOMMENDATIONS** Integrated Inventory and Rockfall Hazard/Risk Rating #### DEM/GIS/Desktop Search Slope Geometry, Location, Rockfall History, AADT, Human Exposure Factor, Annual Rainfall #### **Street-Level Imagery** Catchment Ditch Effectiveness, Block size/volume, Slope Drainage, Geologic Characterization, Percent Shortest Straight Distance (% SSD) #### Field Assessment Drainage, Geologic Characterization, Percent Shortest Straight Distance (% SSD) #### **Detailed Impact Assessment** Impact on Use, Right of Way Impact (if left unattended) Environmental/Cultural Impact (if left unattended), Maintenance Complexity, and Event cost Performance Monitoring ## FUTURE RESEARCH NEEDS #### **Performance Monitoring** - Digital monitoring, such as terrestrial or drone LiDAR, - Using object detection models to identify hazard indicators such as overhangs and the presence of accumulated rockfall debris. ## CONCLUSIONS - The use of high resolution (1m×1m) DEM in conjunction with street-level imagery is an efficient tool to collect data to manage rock cut slopes - Large areas can be covered - Relatively short time - Safe ## Thank You ## USMP GAM Roadmap (Beckstrand et al., 2019) Geotechnical Performance Goals Inventory, USMP Rating and Condition Assessment Performance Modeling and Measuring Project Alternatives, Cost and Economic Analysis <u>Decision Support- Priority Selection, Short and Long Term Allocation</u> of Funds **Monitor Performance**